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Abstract

State reduction processes in different types of photodetection experiments are described

by using different kinds of ladder operators. A special model of discrete photodetection is

developed by the use of superoperators which are based on the Susskind-Glogower raising

and lower operators. The possibility to realize experimentally the discrete photodetection
scheme in a micromaser is discussed.

1 Continuous and Discrete Photodetections

Usually, photodetection of the single-mode radiation field is described by the use of the mode

annihilation and creations operators h and h t, which can be written in terms of the Susskind and

Glogower (SG) [1,2] operators and the number operator h

5 = V_+ 1/__, fit =/_+v/-h + 1 (1)

where
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Here In > are the number states.

When h and h t lower or raise a number state In >, they also generate the weight factor v/n or

x/_ + 1, respectively. The SG operators E+ and E_ only raise or lower the number states without

generating any weight factor. The essential difference between the two types of ladder operators

implies differences between two photodetection schemes.

In the model of continuous photodetection [3-6] the density matrix of the field is continuously

reduced by the information provided by the photodetector. The instantaneous process of one-

photon counting is described by the superoperator J:

ab(t)a t
k(t+) = Jk(t) = Tr[b(t)ata] " (3)
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Here _(t) and _(t +) are the density operators for the radiation field immediately before and

after the detection. The superoperator J consists of nonunitary transformation (describing state

reduction) and the normalization. The no-count process which occurs for a duration time r is

described by the superoperator S,:

b(t + = -
exp(- ½Aa t5 r )/_(t)exp(- _ Aa t5 r )

Tr[f(t)exp(- ½Afitar)]
(4)

Here A is a parameter characteristic of the coupling between the detector and the field. In con-

tinuous photodetection the strength of the interaction depends on the number of photons.

In the present work another photodetection scheme is described in which two-level Rydberg

atoms in the lower state are sent through a cavity and their states are measured at the exit. The

experimental scheme is similar to that of a micromaser [7]. According to the theories of the micro-

maser if one starts with a density operator which is diagonal in the number state representation

OO

= y_ p(n)ln >< n I (5)
rt_O

it remains diagonal after the interaction between the radiation and the two-level atoms [8]. We

would like to use the information obtained from the measurement of the atoms outside the cavity

in order to describe the time development of the field inside the cavity, for a diagonal density

matrix. The idea is that in this photodetection scheme the field reduction is described by the

superoprator B_ which includes the SG operators

= B_,3 1- < OIPlO> (6)

where/_ and/_-x are the density operators for the radiation field before and after the substraction

of a photon. The normalization factor is Tr(bE+E_) = 1- < 01 10>. In order to understand

why Eq. (6) is valid, we show in the following discussion the differences between the present model

of discrete photodetection and the model of continuous photodetection.

In continuous photodetection the measurement occurs continuously at any time whenever the

photodetector is active. In discrete photodetection the measurement occurs only when an atom

leaves the cavity, so that the number of measurements is equal to the number of atoms transmitted

through the cavity. The only referred measurement is that in which an excited atom is detected.

Therefore in this model there is no analog to the no-count process of continuous photodetection.

In the present model we are not interested in the properties of the interactions inside the cavity

and in the associated probabilities. By getting only the information that one atom is excited we

reduce an n-photon state of the radiation into an n-1 photon state. The use of Eq. (6) for the

density operator of Eq. (5) has only a statistical meaning, where p(n) is the statistical probability

that the state is In > while in fact only one of the states In > exists in the cavity. For states

with different number of photons it will take different times to excite one atom, but by repeating

many times the experiments in which one atom is excited and using only the information that one

atom is excited the density operator of Eq. (5) is reduced according to Eq. (6). One should take
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into account that the continuous photodetection theory has also only a statistical meaning. The

statistics obtained by that model is exploited by averaging the time development of the system

over many quantum trajectories [3]. By getting a different information according to our model we

obtain a different photodetection theory which we call discrete photodetection.

As the result of state reduction (6), the changes in the photon number distribution of the

radiation field can be expressed in the present model in the following form

p-,(_) =< "l_-_l" >=
p(n+ 1)

1- < 01_10 > 1 - p(0)
(7)

For comparison, the continuous photodetection model gives for the one count process

p(_,t ÷) =< _l_(t+)l_ >=
< nl@(t)atln >

<fi>t

n+l ,

- <_t;t pin +1
,t). (8)

The mean photon number immediately after the measurement of an excited atom is given

according to Eq. (6) by:

<h>

< fi >_,- 1 -p(0) 1 , (9)

while in the continuous photodetection theory the mean photon number immediately after the

one count process [6]:

< fi >t+=< n >t -1 +
(_,,_)_
<fit>

(10)

The difference between the continuous photodetection theory and the model of discrete pho-

todetection can be explained also as the difference between a statistical model of matter-radiation

interaction by a detector and a statistical model of nondemolition [9] experiments, respectively.

The measurements of atoms excitations outside the cavity in the discrete photodetection model

gives information only on the change in the number of photons inside the cavity but does not give

information on phase changes of the field. This quantum feature follows from the fundamental

principle that it is not possible to produce cloning of all the quantum information. Therefore

in the present experimental scheme of the micromaser one can get enough information only for

diagonal density matrix in which the information on phases has been eliminated [8].

2 Experimental Realization of Discrete Photodetection

We can generalize our model by sending atoms in the lower state through the cavity till the
measurement shows a desired number N of excited atoms. Then the field state is reduced according

to

,5-N = B_N,5 -- /_N*5_:+N (11)
Tr(,5/_+N/_N) •
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Our experimental scheme also enables us to add photons to the cavity where in this case we

send atoms in the upper state through the cavity and measure their states in the exit till the
measurement shows a desired number N of de-excited atoms. Then the field state is reduced

according to

P+N = B_¢_ = /_+_)/_N . (12)

In any real experiment we cannot ignore losses, and the detector of the atoms is not perfect.

For imperfect detection we can generalize our model by assuming that the measurement reduces

the density operator in the form

P±_ = Z aNBI_ [_ " (13)
N

The detector efficiency distribution aN must be sufficiently narrow around the true number _r of

excited (or de-excited) atoms in order to realize our mode. The validity of the present model of

discrete photodetection theory can be checked by doing the experiments with the micromaser in a

very special way. Two-level Rydberg atoms which are in the lower state are transmitted through a

cavity which is initially in the vacuum state. In many experiments atoms excitations are measured

outside the cavity where each experiment is divided into two stages. In the first stage we wait a

time tl till a fixed number n of atoms is excited. This time is variable from one experiment to

another according to quantum mechanical statistical features [8]. However, in each experiment

we rescale the time tl to a zero initial time and measure in the second stage the number of atoms

excitations during an additional time t which is fixed to be the same, for all the experiments

in the second stage. Now, we check the prediction of the usual quantum mechanical statistical

theory of the micromaser [8] for a time of interaction t, assuming an initial number state In >.

The interesting point here is that we can verify by examining the results of the measurements in

the second stage that our initial state obtained from the first stage was the number state In >.

Such experiments can be done only if the losses are quite small which means that the criterion of

a narrow parameter aN in Eq. (1) is valid.
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